Rankers Physics
Topic: Magnetic Effects of Current
Subtopic: Ampere's Circuital Law

A long solenoid has 200 turns per cm and carries a current i. The magnetic field at its centre is 6.28 × 10–² weber/m². Another long solenoid has 100 turns per cm and it carries a current i/3. The value of the magnetic field at its centre is
\[1.05\times 10^{-2} weber/m^{2}\]
\[1.05\times 10^{-5} weber/m^{2}\]
\[1.05\times 10^{-3} weber/m^{2}\]
\[1.05\times 10^{-4} weber/m^{2}\]

Solution:

To solve this problem, we use the formula for the magnetic field inside a long solenoid:

B=μ0ni,B = \mu_0 n i,

where:

  • BB is the magnetic field at the center of the solenoid,
  • μ0=4π×107T\cdotpm/A\mu_0 = 4\pi \times 10^{-7} \, \text{T·m/A} is the permeability of free space,
  • nn is the number of turns per unit length (in meters),
  • ii is the current in the solenoid.

Step 1: Magnetic Field for the First Solenoid

The first solenoid has:

  • n1=200turns per cm=200×100=20000turns per metern_1 = 200 \, \text{turns per cm} = 200 \times 100 = 20000 \, \text{turns per meter},
  • i1=ii_1 = i,
  • B1=6.28×102weber/m2B_1 = 6.28 \times 10^{-2} \, \text{weber/m}^2.

Using the formula for BB, substitute B1B_1 to find ii:

B1=μ0n1i,B_1 = \mu_0 n_1 i, 6.28×102=(4π×107)20000i.6.28 \times 10^{-2} = (4\pi \times 10^{-7}) \cdot 20000 \cdot i.

Simplify:

i=6.28×1024π×10720000.i = \frac{6.28 \times 10^{-2}}{4\pi \times 10^{-7} \cdot 20000}.

Substitute 4π12.574\pi \approx 12.57:

i=6.28×10212.57×10720000=6.28×1022.514×102.i = \frac{6.28 \times 10^{-2}}{12.57 \times 10^{-7} \cdot 20000} = \frac{6.28 \times 10^{-2}}{2.514 \times 10^{-2}}. i=2.5A.i = 2.5 \, \text{A}.


Step 2: Magnetic Field for the Second Solenoid

The second solenoid has:

  • n2=100turns per cm=100×100=10000turns per metern_2 = 100 \, \text{turns per cm} = 100 \times 100 = 10000 \, \text{turns per meter},
  • i2=i3=2.53=0.833Ai_2 = \frac{i}{3} = \frac{2.5}{3} = 0.833 \, \text{A}.

Using the formula for BB:

B2=μ0n2i2,B_2 = \mu_0 n_2 i_2,

Substitute the values:

B2=(4π×107)100000.833.B_2 = (4\pi \times 10^{-7}) \cdot 10000 \cdot 0.833.

Simplify:

B2=4π×1078330.B_2 = 4\pi \times 10^{-7} \cdot 8330.

Substitute 4π12.574\pi \approx 12.57:

B2=12.57×1078330=1.048×102.B_2 = 12.57 \times 10^{-7} \cdot 8330 = 1.048 \times 10^{-2}.


Final Answer:

B2=1.05×102weber/m2\boxed{B_2 = 1.05 \times 10^{-2} \, \text{weber/m}^2}

Leave a Reply

Your email address will not be published. Required fields are marked *