Solution:
To find the number of molecules \( N \) of a gas, we can use the ideal gas law in terms of the number of molecules:
\[
PV = NkT
\]
where:
- \( P = 1.4 \times 10^7 \, \text{N/m}^2 \)
- \( V = 2 \times 10^{-3} \, \text{m}^3 \)
- \( T = 227^\circ \text{C} = 227 + 273 = 500 \, \text{K} \)
- \( k = 1.38 \times 10^{-23} \, \text{J/K} \) (Boltzmann constant)
Rearrange to solve for \( N \):
\[
N = \frac{PV}{kT}
\]
Substitute the values:
\[
N = \frac{(1.4 \times 10^7) \times (2 \times 10^{-3})}{(1.38 \times 10^{-23}) \times 500}
\]
Calculating this:
\[
N \approx 4.06 \times 10^{24}
\]
So, the number of molecules is \( 4.06 \times 10^{24} \).
Leave a Reply