Solution:
Given:
\[
P = \frac{A}{1 + \left( \frac{B}{V} \right)^2}
\]
Using the ideal gas equation, \( PV = nRT \), for initial and final states, we can express the temperature change.
Step 1: Initial State (at \( V = B \))
\[
P_1 = \frac{A}{1 + \left( \frac{B}{B} \right)^2} = \frac{A}{2}
\]
\[
T_1 = \frac{P_1 V}{R} = \frac{\left(\frac{A}{2}\right) B}{R} = \frac{AB}{2R}
\]
Step 2: Final State (at \( V = 2B \))
\[
P_2 = \frac{A}{1 + \left( \frac{B}{2B} \right)^2} = \frac{A}{1 + \frac{1}{4}} = \frac{A}{\frac{5}{4}} = \frac{4A}{5}
\]
\[
T_2 = \frac{P_2 V}{R} = \frac{\left(\frac{4A}{5}\right) (2B)}{R} = \frac{8AB}{5R}
\]
Step 3: Temperature Change
\[
\Delta T = T_2 - T_1 = \frac{8AB}{5R} - \frac{AB}{2R} = \frac{16AB - 5AB}{10R} = \frac{11AB}{10R}
\]
Answer: \(\frac{11AB}{10R}\)
Leave a Reply