Solution:
The relationship between the coefficient of volume expansion (\( \beta \)) and the coefficient of linear expansion (\( \alpha \)) for a solid is:
\[
\beta = 3\alpha
\]
Given:
- Volume increase = 0.24%
- Temperature increase \( \Delta T = 40^\circ \text{C} \)
The coefficient of volume expansion \( \beta \) is given by:
\[
\beta = \frac{\text{Percentage increase in volume}}{\Delta T} = \frac{0.24}{40} = 0.006\% \, \text{per } ^\circ\text{C} = 6 \times 10^{-5} \, \text{per } ^\circ\text{C}
\]
Now, using \( \beta = 3\alpha \):
\[
\alpha = \frac{\beta}{3} = \frac{6 \times 10^{-5}}{3} = 2 \times 10^{-5} \, \text{per } ^\circ\text{C}
\]
Thus, the coefficient of linear expansion of the metal is \( 2 \times 10^{-5} \, \text{per } ^\circ\text{C} \).
Leave a Reply