Solution:
The relation between the root mean square (r.m.s.) velocity \( v_{\text{rms}} \) and the most probable velocity \( v_{\text{mp}} \) of a gas is derived from their respective formulas:
1. **Most probable velocity** \( v_{\text{mp}} \):
\[
v_{\text{mp}} = \sqrt{\frac{2 k_B T}{m}}
\]
2. **Root mean square velocity** \( v_{\text{rms}} \):
\[
v_{\text{rms}} = \sqrt{\frac{3 k_B T}{m}}
\]
Dividing \( v_{\text{rms}} \) by \( v_{\text{mp}} \):
\[
\frac{v_{\text{rms}}}{v_{\text{mp}}} = \sqrt{\frac{3}{2}}
\]
Thus:
\[
v_{\text{rms}} = \sqrt{\frac{3}{2}} \, v_{\text{mp}}
\]
Leave a Reply