Solution:
Given the relationship \( R = 5T^2 \), and using the formulas for range \( R \) and time of flight \( T \):
1. **Range formula:**
R = u cos(θ) · T
2. **Time of flight formula:**
T = (2u sin(θ)) / g
Substituting T into the range equation:
R = u cos(θ) · (2u sin(θ) / g)
This gives:
R = (2u² sin(θ) cos(θ)) / g
Setting this equal to \( 5T^2 \):
(2u² sin(θ) cos(θ)) / g = 5((2u sin(θ)) / g)²
Simplifying:
(2u² sin(θ) cos(θ)) / g = (20u² sin²(θ)) / g²
Cancelling \( u² / g \):
2 cos(θ) = 20 sin(θ) / g
Given g = 10 m/s²:
2 cos(θ) = 2 sin(θ)
Thus:
cos(θ) = sin(θ)
This implies:
tan(θ) = 1 → θ = 45°
The angle to the horizontal should be 45°
Leave a Reply