Solution:
\[ g=\frac{GM}{R^{2}}= \frac{G\times \rho\frac{4}{3}\pi R^{3}}{R^{2}}=\frac{4G\rho\pi R}{3} \]
\[ \frac{g_{1}}{g_{2}}= \frac{R_{1}.\rho_{1}}{R_{2}.\rho_{2}}= \frac{4\times 1}{1\times 2}= \frac{2}{1} \]
\[ g=\frac{GM}{R^{2}}= \frac{G\times \rho\frac{4}{3}\pi R^{3}}{R^{2}}=\frac{4G\rho\pi R}{3} \]
\[ \frac{g_{1}}{g_{2}}= \frac{R_{1}.\rho_{1}}{R_{2}.\rho_{2}}= \frac{4\times 1}{1\times 2}= \frac{2}{1} \]
Leave a Reply