Rankers Physics
Topic: Thermal Physics
Subtopic: Kinetic Theory of Gases

The relation between rms velocity. Vrms and the most probable velocity, Vmp of a gas is :
\[ v_{rms}=v_{mp}\]
\[ v_{rms}=\sqrt{\frac{3}{2}} v_{mp}\]
\[ v_{rms}=\sqrt{\frac{2}{3}}v_{mp} \]
\[ v_{rms}=\frac{2}{3}v_{mp}\]

Solution:

The relation between the root mean square (r.m.s.) velocity \( v_{\text{rms}} \) and the most probable velocity \( v_{\text{mp}} \) of a gas is derived from their respective formulas:

1. **Most probable velocity** \( v_{\text{mp}} \):
\[
v_{\text{mp}} = \sqrt{\frac{2 k_B T}{m}}
\]

2. **Root mean square velocity** \( v_{\text{rms}} \):
\[
v_{\text{rms}} = \sqrt{\frac{3 k_B T}{m}}
\]

Dividing \( v_{\text{rms}} \) by \( v_{\text{mp}} \):

\[
\frac{v_{\text{rms}}}{v_{\text{mp}}} = \sqrt{\frac{3}{2}}
\]

Thus:

\[
v_{\text{rms}} = \sqrt{\frac{3}{2}} \, v_{\text{mp}}
\]

Leave a Reply

Your email address will not be published. Required fields are marked *