Solution:
To solve this, we can use Gay-Lussac's Law, which states:
\[
\frac{P_1}{T_1} = \frac{P_2}{T_2}
\]
Given:
- Initial pressure \( P_1 = 870 \, \text{mm Hg} \),
- Final pressure \( P_2 = 1800 \, \text{mm Hg} \),
- Initial temperature \( T_1 = 17^\circ \text{C} = 17 + 273 = 290 \, \text{K} \).
Rearrange to find \( T_2 \):
\[
T_2 = \frac{P_2 \times T_1}{P_1}
\]
Substitute the values:
\[
T_2 = \frac{1800 \times 290}{870}
\]
Calculating this:
\[
T_2 = 600 \, \text{K}
\]
So, the temperature at which the pressure becomes 1800 mm of Hg is 600 K.
Leave a Reply