Solution:
\[ E_{1}= \frac{1}{2}Kx^{2} \]
\[ E_{2}= \frac{1}{2}Ky^{2} \]
\[ E= \frac{1}{2}K(x+y)^{2}= \frac{1}{2}Kx^{2} + \frac{1}{2}Ky^{2} + Kxy \]
\[ E_{1}= \frac{1}{2}Kx^{2} \]
\[ E_{2}= \frac{1}{2}Ky^{2} \]
\[ E= \frac{1}{2}K(x+y)^{2}= \frac{1}{2}Kx^{2} + \frac{1}{2}Ky^{2} + Kxy \]
Leave a Reply