Rankers Physics
Topic: Current Electricity
Subtopic: Relation between Current and Drift Velocity

If the number of free electrons is \(5\times 10^{28} m^{-3}\) then the drift velocity of electron in a conductor of area of cross-section \(10^{-4} m^{2}\) for a current of 1.2 A is:  
\[1.5\times 10^{-2} m/s\]
\[1.5\times 10^{-3} m/s\]
\[1.5\times 10^{-4} m/s\]
\[1.5\times 10^{-6} m/s\]

Solution:

To find the drift velocity vdv_d of the electrons, we use the formula for current in terms of drift velocity:

I=nAevdI = n A e v_d

Where:

  • II is the current (1.2 A),
  • nn is the number of free electrons per unit volume (5×1028m35 \times 10^{28} \, \text{m}^{-3}),
  • AA is the cross-sectional area of the conductor (104m210^{-4} \, \text{m}^2),
  • ee is the charge of an electron (1.6×1019C1.6 \times 10^{-19} \, \text{C}),
  • vdv_d is the drift velocity of the electrons (which we need to calculate).

Step 1: Rearranging the formula to solve for vdv_d

vd=InAev_d = \frac{I}{n A e}

Step 2: Substituting the given values

vd=1.2(5×1028)×(104)×(1.6×1019)v_d = \frac{1.2}{(5 \times 10^{28}) \times (10^{-4}) \times (1.6 \times 10^{-19})}

Step 3: Performing the calculation

vd=1.2(5×1028)×(104)×(1.6×1019)v_d = \frac{1.2}{(5 \times 10^{28}) \times (10^{-4}) \times (1.6 \times 10^{-19})} vd=1.28×106v_d = \frac{1.2}{8 \times 10^{6}} vd=1.5×107m/sv_d = 1.5 \times 10^{-7} \, \text{m/s}

Final Answer:

The drift velocity of the electrons is 1.5×107m/s\boxed{1.5 \times 10^{-7} \, \text{m/s}}.

Leave a Reply

Your email address will not be published. Required fields are marked *